
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 Efficiency Comparison Between RLE-Fibonacci

and RLE-Huffman Coding in Grayscale Image

Compression

 Dzaki Ahmad Al Hussainy - 13524084

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13524084@mahasiswa.itb.ac.id , 13524084@std.stei.itb.ac.id

Abstract— This paper presents a comparative analysis of

two hybrid lossless compression methods for grayscale

images: RLE-Fibonacci and RLE-Huffman. Both

techniques begin by applying Run-Length Encoding (RLE)

to reduce spatial redundancy by encoding consecutive

identical pixel values. The RLE-Fibonacci method then

compresses the run-length values using Fibonacci coding, a

universal binary code that is efficient for representing small

integers. In contrast, the RLE-Huffman approach applies

Huffman coding, which assigns variable-length codes based

on the frequency of each run-length value. The performance

of both methods is evaluated using standard grayscale

image datasets and assessed through key metrics such as

Compression Ratio (CR).

Keywords— Gray scale, Fibonacii Coding, Run Length

Encoding, Huffman Coding, Lossless Compression

I. INTRODUCTION

With the growing demands of today’s digital era, efficient

storage and transmission of data—especially digital images—

have become increasingly important. The rise in digital photos

and illustrations calls for the use of lossless data compression

systems. Lossless compression is particularly crucial in fields

such as medical data storage and archival systems.

Grayscale images, which are typically represented using a

single channel per pixel, often exhibit large regions of uniform

intensity. This characteristic makes them highly suitable for

Run-Length Encoding (RLE), a simple yet effective

compression algorithm that reduces spatial redundancy by

encoding consecutive identical values as a single value paired

with a count.

To further enhance the efficiency of RLE, it can be

combined with other encoding techniques. One such method is

Fibonacci coding, a universal binary encoding scheme that

efficiently represents small positive integers, such as the run

lengths produced by RLE. This combined approach—referred

to as RLE-Fibonacci—can offer improved compression

performance, particularly for images with frequent short run

lengths.

Another well-established method for compressing data is

Huffman coding, which assigns variable-length binary codes to

data values based on their frequency of occurrence. When

combined with RLE, the resulting RLE-Huffman method

leverages both spatial redundancy and statistical coding

efficiency to reduce image size.

This paper presents a comparative study of these two hybrid

lossless compression approaches: RLE-Fibonacci and RLE-

Huffman. Both methods are applied to standard grayscale

image datasets and evaluated using metrics such as

Compression Ratio (CR) . The goal is to analyze and compare

their efficiency, highlight their respective advantages and

limitations, and determine their suitability for different types of

grayscale image data.

II. THEORITICAL FRAMEWORK

A. Digital Image

In the field of image processing, an image is referred as a
picture that can be defind as representation that exists in two-
dimensional (2D) space. An image is a continous two-
dimentional signal that can be perceived by the human visual
system. More formally, it can be described mathematically as
two-dimentional function, where the coordinates (x,y) indicate
specific points on the 2D plane, and the function f(x,y)
correspond to the intensity of light, or brightness, at each of
those point [1].

Images can be classified based on the number of frames they
contain. Broadly, there are two main types: still images and
moving images. A still image is a static, single frame that does
not change over time. In contrast, a moving image consists of a
sequence of frames displayed in rapid succession, creating the
illusion of motion. Each individual frame in a moving image is
essentially a still image captured at a specific moment in time[1].

A digital image is a discrete representation of a continuous
visual signal, obtained through sampling in both space and time
[1]. Temporal sampling refers to the process of capturing a
sequence of frames over time, as in video. Spatial sampling
involves measuring the intensity of light at discrete coordinate
points (x, y) within each frame [1].

mailto:13524084@mahasiswa.itb.ac.id
mailto:13524084@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Digital images are typically represented as two-dimensional
matrices of size M x N, where M and N denote the image’s
resolution in terms of rows and columns, respectively [1].

𝑓(𝑥, 𝑦) = [

𝑓(0,0) ⋯ 𝑓(0, 𝑁 − 1)
⋮ ⋱ ⋮

𝑓(𝑀 − 1,0) ⋯ 𝑓(𝑀 − 1, 𝑁 − 1)
]

Each element in the matrix corresponds to a pixel (short for
picture element), which stores the intensity or color value at a
specific spatial location [1]. Each pixel in an image is defined
by the function f(x, y), which determines the brightness or
darkness at the corresponding coordinates (x, y). Example
image 2. 2 have a resolution of 1200 × 1500 pixels contains a
total of 1,800,000 individual pixels. This means the image has
1200 rows and 1500 columns, and each pixel represents a
specific intensity or color value at a unique position (x, y) within
the image [1].

Fig 2.A.1 Ilustration pixel on image

(Source: [1])

The value of f(x, y) depends on the type of image. In a
grayscale image, f(x, y) consists of a single intensity value that
represents the level of brightness, typically ranging from black
to white. In contrast, a colored image uses a vector-valued
function f(x, y) = (R, G, B), where each component corresponds
to the intensity of the red, green, and blue channels. These three
components are combined to produce a wide range of colors
perceived in the image.

B. Grayscale Image

A grayscale image is an image that represents pixel intensity
values using quantized levels of light intensity.[2] Quantization
refers to the process of discretizing a continuous range of light
intensity at each spatial coordinate (x, y).[2] The main purpose
of quantization is to map continuous light values into K discrete
intensity levels. Each pixel’s intensity is represented by a value
in the range [0, K - 1], where this range is referred to as the gray
level. The quantization process divides the intensity scale into K
distinct values such as 0, 1, 2, …, K – 1 [2]. Typically, K is
chosen as a power of two, expressed as K = 2𝑚, where m is a
positive integer. In this context, K defines the number of gray
levels available, and m determines the number of bits used to
represent each pixel [2].

Fig 2.B.1 representaion of K value

(Source: [2])

C. Image Compression

Image compression is a technique used to reduce

redundancy in the representation of image data, with the goal of

minimizing storage requirements without significantly

compromising image quality. A compressed image requires less

memory compared to an uncompressed one, and as a result,

transmission of compressed images is generally faster and more

efficient [3].

The main objective of image compression is to eliminate

redundancy such as repetitive data that can be represented more

compactly. Redundancy refers to repeating patterns or

predictable elements within the image that can be encoded more

efficiently. There are three primary types of redundancy in

images:

1. Coding Redundancy

This occurs when the same pixel values are represented

using longer or inefficient codewords[3].

2. Spatial/Temporal Redundancy

This type of redundancy arises when neighboring

pixels (in space or in consecutive frames of a video)

have similar or identical intensity values [3].

3. Psychovisual Redundancy

This refers to information that is perceptually less

important or even imperceptible to the human visual

system [3].

D. Method to File compression

Image compression techniques can generally be divided into

two categories based on whether or not they preserve all

original data:

1. Lossy compression

Lossy compression educes the file size significantly by

permanently removing certain image details that are less

noticeable to the human eye [3]. Although some

information is lost in the process, the resulting image

still maintains a visually acceptable quality. This method

typically achieves a higher compression ratio compared

to lossless techniques, making it suitable for applications

where perfect accuracy is not essential, such as web

graphics and digital photography. Common examples

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

include JPEG compression and fractal-based image

compression [3].

2. Lossless compression

Lossless compression preserves all the original image

data, allowing the image to be perfectly reconstructed

after decompression without any loss of information [3].

Although it generally results in lower compression ratios

than lossy methods, it is essential in fields that require

high fidelity and data integrity, such as medical imaging

and X-rays. Examples of lossless compression

techniques include Huffman coding, Run-Length

Encoding (RLE), and predictive or quantized coding[3].

E. Run-Length Encoding (RLE)

Run-Length Encoding (RLE) is a compression technique

used for reducing the size of images that contain many

sequential pixels with the same gray level [3]. It works by

creating a pair (p, q), where p is the gray level, and q is the

number of consecutive pixels that share that grayness—this

count is called the run length.

For example, a row like [120, 120, 120, 45, 45] would be

encoded as [(120, 3), (45, 2)]. This helps save space by avoiding

repeated values.

F. Fibonacii sequance

The Fibonacci sequence is a well-known numerical

sequence defined by a specific recurrence relation. Each term

in the sequence is the sum of the two preceding terms, starting

from the initial values 0 and 1 [4]. Formally, the sequence 𝐹𝑛 is

defined as follows:

G. Fibonacii coding

Fibonacci coding encodes an integer into binary using the

Fibonacci representation of a number, based on Zeckendorf’s

Theorem [5]. This theorem says that every positive number can

be written as a sum of different Fibonacci numbers, as long as

we don’t use two that are next to each other in the sequence [5].

So for any number N, we can find a combination of non-

consecutive Fibonacci numbers that add up to N. This unique

way of writing a number is called its Zeckendorf representation,

and it’s what we use to build the Fibonacci code [5]. Then, to

make decoding easy, we add a special ‘11’ terminator at the end

of the binary sequence.

Fig 2.G.1 Ilustration pixel on Fibonacii coding

(Source: [5])

H. Huffman Coding

Huffman coding is a lossless compression method that

encodes pixels with higher frequency using fewer bits than

those with lower frequency. Huffman coding uses a Huffman

tree to create the encoding. The algorithm is:

1. Every grayness intensity is represented as a vertex;

each vertex is assigned the frequency of that

grayness in every single pixel.

2. Sort all vertices in ascending order based on their

frequency.

3. Combine the two vertices with the smallest

frequencies into a new vertex. The new vertex's

frequency is the sum of the two leaf frequencies.

4. Repeat step 2 until there is only one single binary

tree.

5. Label the left edge with zero and the right edge with

one.

6. Traverse the binary tree from the root to each leaf.

The sequence of edge labels from root to leaf

represents the Huffman code for the corresponding

gray level.

The binary string produced by Huffman coding is known as

a prefix code or prefix-free code. A prefix-free code means that

no codeword is a prefix of any other codeword. This ensures

that each code has a unique sequence of bits at the beginning,

making all the codes distinct and allowing unambiguous

decoding [6].

III. IMPLEMENTATION

A. Restrictions and Scope of Analysis

This paper will focus exclusively on grayscale images, with

pixel intensities ranging from 0 (black) to 255 (white) and

represented within K = 8 bits. Additionally, the scope of image

analysis will be limited to pixel dimensions ranging from 10x10

to 100x100. To facilitate a clearer analysis and explanation of

the Huffman tree, this study will not delve into aspects

concerning image metadata, header files, or specific image

formatting.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B. Implementation and Case Study

The grayscale image compression process starts by loading

the image and converting it into a one-dimensional (1D) array,

where each value represents the gray intensity of a pixel. Next,

Run-Length Encoding (RLE) is applied to compress repeating

pixel values. This step transforms the pixel sequence into a

series of pairs, where each pair consists of a gray intensity value

and its corresponding run length, effectively reducing

redundancy in the image data.

After RLE, the compressed data is processed using two

different encoding approaches for comparison. In the first

method, the run length values are encoded using Fibonacci

encoding, which utilizes unique binary representations based on

Zeckendorf’s Theorem. In the second method, the gray

intensity values are encoded using Huffman coding, which

assigns shorter binary codes to more frequently occurring

intensities. Finally, the total compressed size from both

methods is calculated and compared using the compression

ratio to determine which method provides better compression

efficiency. Here is the flow of the method used.

Image 3.B.1.1 Flow chart of compression method with
RLE-Fibonacii and RLE Huffman Encoding

(Source: Author’s Archive)

B.1 Converting Image Into Pixel Matrix

Before compressing happened the image need to be change
into pixel matrix, which is 2D matrix with every single element
represent grayscale range 0 to 255.

Fig 3.B.1.2 Ilustration 10x10 pixel 2D image grayscale
pixel.

(Source: Author’s Archive)

For illustration purposes, Figure 3.B.1, which visually

resembles an elephant, can be represented as a 2D matrix, where

each element corresponds to a pixel’s grayscale intensity value.

This matrix structure provides a digital representation of the

image, suitable for further processing. Here is the visualised

matrix.

In the implementation, the Pillow (PIL) library is used to

read the image file. Pillow is an open-source Python package

widely used for image processing tasks, including opening,

converting, and manipulating image data. To simplify the

application of Run-Length Encoding (RLE), the 2D image

matrix must first be flattened into a 1D array. This

transformation is performed using the NumPy library, which

provides efficient operations on numerical arrays. The

following code snippet demonstrates this process:

Image 3.B.1.3 Implementation code for reading file and

convert it into 1D array

(Source: Author’s Archive)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

B.2 Implementing RLE

After converting the image into 1D array RLE is applied to
compress the pixel sequence into a series of pairs, where each
pair consists of a gray intensity value and its corresponding run
length, effectively reducing redundancy in the image data.

Fig 3.B.2.1 Implementation code RLE

(Source: Author’s Archive)

An example of the resulting 1D array after applying Run-
Length Encoding (RLE) can be represented as follows:

[(236, 21), (159, 3), (236, 2), (159, 3), (236, 2), (159, 1), (178,
6), (159, 1), (236, 2), (178, 1), (8, 2), (178, 2), (8, 2), (156, 1),
(236, 2), (178, 3), (104, 2), (178, 1), (168, 1), (156, 1), (236, 3),
(178, 1), (104, 3), (156, 2), (236, 4), (178, 1), (104, 2), (156, 2),
(236, 5), (104, 2), (236, 16)]

In this representation, the first value of each pair denotes the

grayscale intensity level (gray value), while the second value

represents the corresponding run length, indicating how many

consecutive pixels share the same intensity. After obtaining this

encoded sequence, two different lossless compression methods

can be implemented to further compress the data and evaluate

their relative effectiveness.

C. Implementing Fibonacii Coding

The following steps are implemented in the provided code

to generate the Fibonacci encoding of a given number:

1. Preallocate Fibonacci Numbers

A list of Fibonacci numbers is generated starting

from 1 and 2.

Generation continues until the largest Fibonacci

number less than or equal to the input number n is

found.

2. Find Largest Fibonacci Number ≤ n

 A helper function largestFiboLessOrEqual(n)

iteratively computes Fibonacci numbers until it finds

the largest one satisfying 𝐹𝑘 ≤ n. This is for index that

serves as the starting point for the encoding.

3. Initialize Codeword Array

 An array codeword of size index + 2 is initialized.

The +2 ensures space for the binary representation

and the mandatory terminating 1.

4. Encode Using Greedy Subtraction

 Beginning from the largest valid Fibonacci index, the

algorithm subtracts Fibonacci values from n in

descending order. If a Fibonacci number is part of the

sum, a 1 is written at that position in the codeword

array. If a Fibonacci number is skipped (because it

would exceed the remaining value of n), a 0 is written

instead.

5. Add Terminator

 After encoding the number, a final 1 is appended to

mark the end of the codeword. This ensures the code

is self-delimiting and prefix-free.

Fig 3.C.1.1 Implementation code of Fibonacii coding

(Source: Author’s Archive)

Example the number 21 from the first run-length can be
coded into 00000011 in fibonacii encoding.

Next step is encode gray level using standard binary
representation. The result is a mixed-format encoding where
data redundancy is reduced by applying different encoding
schemes suited to the nature of each component.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 3.C.1.2 Implementation storing RLE value and
Fibonacii code

(Source: Author’s Archive)

Gray

value

frequencies Gray value in

binary

Fibonacii encoded

frequencies

236 21 11101100 00000011

159 3 10011111 0011

236 2 11101100 011

159 3 10011111 0011

236 2 11101100 011

159 1 10011111 11

178 6 10110010 10011

159 1 10011111 11

236 2 11101100 011

178 1 10110010 11

8 2 00001000 011

178 2 10110010 011

8 1 00001000 011

156 1 10011100 11

236 2 11101100 011

178 3 10110010 0011

104 3 01101000 011

178 1 10110010 11

168 1 10101000 11

156 1 10011100 11

236 3 11101100 0011

178 1 10110010 11

104 3 01101000 0011

156 2 10011100 011

236 4 11101100 1011

178 1 10110010 11

104 2 01101000 011

156 2 10011100 011

236 5 11101100 00011

104 2 01101000 011

236 16 11101100 0010011

After that comparing and analysis will continue in section E

D. Implementing Huffman Coding

Huffman coding is applied to encode the gray levels derived

from the output of RLE. However, the frequency of each

intensity value cannot be directly obtained from the original

image and must be computed from the RLE result. Therefore, a

helper function is required to traverse the RLE output and

accumulate the total frequency of each gray level. The

implementation of this helper function is presented as follows:

Fig 3.D.1.1 Implementation counting RLE Gray

frequencies

(Source: Author’s Archive)

The function count_gray_frequencies is designed to

calculate the total frequency of each gray level from a list of

Run-Length Encoded (RLE) values. In RLE format, each

element of the list is a tuple (value, count), where value

represents the gray values and count represents how many times

it appears consecutively. After applying the function here is the

sum of all of the frequencies:
Gray value 236 159 178 8 156 104 168

Frequencies 57 8 15 4 6 9 1

These frequencies are sorted then used as input to the

Huffman coding algorithm. Huffman coding constructs an

optimal binary tree based on symbol frequencies, assigning

shorter binary codes to more frequent gray values and longer

codes to less frequent ones. This variable-length, prefix-free

encoding minimizes the average number of bits required to

represent the intensity values. The resulting Huffman encoding

tree as follow

Fig 3.D.1.2 Huffman Tree Result from Huffman Coding

(Source: Author’s Archive)

The resulting traversal of the Huffman tree produces the

binary code for each gray level. Each leaf node in the tree
represents a unique gray value, and the path from the root to that
leaf determines its corresponding Huffman code. Moving left
adds a 0 to the code, while moving right adds a 1. This traversal
process ensures that frequently occurring gray values receive
shorter codes, while less frequent values receive longer codes,
thereby optimizing the overall compression efficiency. The
resulting encoded binary representations for each gray value,
obtained by traversing the Huffman tree, are presented as
follows:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Gray value frequencies Encoded Huffman

168 1 01000

8 4 01001

156 6 0101

159 8 000

104 9 001

178 15 011

236 57 1

This is the implementation code for Huffman coding :

Fig 3.D.1.3 Implementation code of Huffman coding

(Source: Author’s Archive)

The next step involves encoding the gray levels using the
binary representations derived from the Huffman coding tree.
Each gray value is replaced by its corresponding Huffman code,
which is obtained by traversing the tree structure. Additionally,

the run-length count associated with each gray level in the RLE
output is encoded separately using a binary representation.

Fig 3.D.1.4 Implementation code of Huffman coding in
RLE

(Source: Author’s Archive)

The result of applying Huffman encoding to the gray values

and binary encoding (e.g., Fibonacci) to the run-length counts

from Figure 3.B.1.2 is presented in the table below. Each pair

represents a compressed form of (p, q), where:

The first element is the Huffman binary code for the gray

value.

The second element is the normal binary encoding.

Gray

value

frequencies Huffman Gray

Value

Binary

frequencies

236 21 1 00010101

159 3 000 00000011

236 2 1 00000010

159 3 000 00000011

236 2 1 00000010

159 1 000 00000001

178 6 011 00000110

159 1 000 00000001

236 2 1 00000010

178 1 011 00000001

8 2 01001 00000010

178 2 011 00000010

8 1 01001 00000010

156 1 0101 00000001

236 2 1 00000010

178 3 011 00000011

236 2 001 00000010

178 1 011 00000001

168 1 01000 00000001

156 1 0101 00000001

236 3 1 00000011

178 1 011 00000001

104 3 001 00000011

156 2 0101 00000010

236 4 1 00000100

178 1 011 00000001

104 2 001 00000010

156 2 0101 00000010

236 5 1 00000101

104 2 001 00000010

236 16 1 00010000

E. Calculating Compression Ratio

To evaluate the efficiency of each compression method, it

is necessary to compare the original file size before

compression with the compressed file size after applying a

given encoding technique. The compression ratio is calculated

using the following formula:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐶𝑟) = (
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒
) × 100 %

In accordance with the Restrictions and Scope of Analysis,

the bit-length of each grayscale pixel is defined as K = 8,

meaning each gray value is represented using 8-bit binary.

Based on Figure 3.B.1, the image contains 100 pixels.

Therefore, the original file size is:

1. Fibonacci Encoding Analysis

To determine the total size after compression using

Fibonacci encoding, the following summation is used:

𝐶𝑠𝐹𝑖𝑏 = ∑ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑖𝑏𝑜𝑛𝑎𝑐𝑖𝑖𝐸𝑛𝑐𝑜𝑑𝑒𝑑)𝑖)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝐿𝐸)

𝑖=1

+ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑛𝑎𝑟𝑦 𝑔𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒𝑖))

𝐶𝑠𝐹𝑖𝑏 = 103 + 248 = 351 𝑏𝑖𝑡𝑠

𝐶𝑟𝐹𝑖𝑏 =
351

800
× 100% = 43.88%

This result indicates that the image size was reduced by

approximately 43.88% through Fibonacci-based encoding.

2. Huffman Encoding Analysis

Using Huffman coding, the compressed size is

computed as:

𝐶𝑠𝐻𝑢𝑓𝑓 = ∑ (𝑙𝑒𝑛𝑔𝑡ℎ(ℎ𝑢𝑓𝑓𝑚𝑎𝑛)𝑖)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝐿𝐸)

𝑖=1

+ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑛𝑎𝑟𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠𝑖))

𝐶𝑠𝐻𝑢𝑓 = 85 + 248 = 333 𝑏𝑖𝑡𝑠

𝐶𝑟𝐻𝑢𝑓 =
333

800
× 100% = 41.62%

Thus, Huffman compression achieved a size reduction of

approximately 41.6%.

3. Basic RLE with Fixed-Length Binary

As a control, basic RLE is applied using standard binary

representation for both the gray values and run-lengths:

𝐶𝑠𝑁 = ∑ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑛𝑎𝑟𝑦 𝑔𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒)𝑖)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝐿𝐸)

𝑖=1

+ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑛𝑎𝑟𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠𝑖))

𝐶𝑠𝑁 = 248 + 248 = 496 𝑏𝑖𝑡𝑠

𝐶𝑟𝑁 =
496

800
× 100% = 62.00%

This shows that basic RLE alone provides a smaller

reduction, shrinking the image size by 38%.

Fig 3.E.1.1 Implementation code to help calculate Cr

(Source: Author’s Archive)

IV. RESULT AND FURTHER ANALYSIS

After calculating all compression ratio and size reduction

now can be summarizes into tabel bellow the performance of

the three evaluated encoding techniques in terms of compressed

size and compression ratio, based on an original grayscale

image of 100 pixels (800 bits in uncompressed form):

Compression

Method

Compressed

Size (bits)

Compression

Ratio (%)

Size

Reduction

(%)

Fibonacci

Encoding

351 43.88% 56.12%

Huffman

Encoding

333 41.62% 58.38%

Basic RLE

(8-bit fixed)

496 62.00% 38.00%

Huffman encoding yielded the smallest compressed size

(333 bits) and the highest size reduction (58.38%). This result

aligns with Huffman coding’s principle of assigning shorter

binary codes to more frequent symbols, which significantly

reduces redundancy in data with non-uniform frequency

distributions.

Fibonacci encoding, while slightly less efficient than

Huffman, still achieved a significant reduction (351 bits,

56.12% savings). Its strength lies in encoding numerical values

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

like run lengths using variable-length prefix-free codes without

requiring a frequency table. This makes it beneficial in

environments where maintaining symbol frequencies is costly

or unnecessary.

Basic RLE using fixed 8-bit binary encoding for both pixel

values and run-lengths resulted in the least efficient

compression, with only a 38.00% reduction. While RLE is

effective for sequences with long repeated values, it lacks the

adaptability of variable-length encodings and tends to include

overhead when repetition is not dominant.

Previous research [7] recommended the use of Run-Length

Encoding (RLE) combined with Huffman coding to achieve

higher compression efficiency, particularly in images

dominated by repetitive grayscale intensity values. To assess

the validity of this claim, three compression strategies—RLE

with Fibonacci encoding, RLE with Huffman encoding, and

basic RLE with fixed-length binary—were applied to a

grayscale image consisting of 1,036,800 bits (corresponding to

129,600 pixels, each represented using 8 bits).

The combination of RLE and Huffman encoding produced the

most efficient compression, reducing the image size by 98.80%

and achieving a compressed size of only 12,490 bits. This

outcome demonstrates superior performance compared to RLE

with Fibonacci encoding (97.80% reduction) and basic RLE

(98.05% reduction).

These findings support the recommendation made in [7],

confirming that Huffman encoding, when applied after RLE,

significantly enhances compression efficiency. The

improvement is attributed to Huffman’s capacity to assign

shorter codes to frequently occurring symbols, which

complements the output of RLE by effectively compressing

repeated patterns in grayscale images.

V. SUMMERY AND RECOMANDATION

Across both experiments, Huffman encoding consistently

provided superior compression results. This is attributed to its

optimal use of variable-length prefix codes based on frequency

distribution, making it especially effective after applying RLE,

which flattens repeated pixel values. Fibonacci encoding, while

slightly less efficient in terms of space savings, offers simplicity

and deterministic decoding, making it suitable in systems where

codebook transmission is impractical or forbidden.

Basic RLE using fixed 8-bit binary representations is the

simplest to implement but suffers from a lack of adaptiveness

to data frequency. Its performance is acceptable in highly

uniform images but suboptimal otherwise.

Based on the above findings, Huffman encoding following

RLE is the most efficient compression strategy for grayscale

images in both small and large data settings. Fibonacci

encoding may be considered a viable alternative where

computational simplicity or prefix-free encoding is required.

Basic RLE serves as a baseline method but is not recommended

for scenarios where maximum compression is critical.

Future work is encouraged to explore fractal-based or

hybrid compression approaches, particularly for images

containing self-similar patterns, as they may provide even

greater compression yields.

VI. AKNOWLEDGMENT

The author extends heartfelt gratitude to Allah S.W.T for

providing wisdom, perseverance, and opportunity to complete

this paper successfully. Sincere appreciation is all extended to

Mr. Dr. Ir. Rinaldi Munir, M.T., and Mr. Arrival Dwi

Sentosa, S.Kom., M.T. as the lecturer of the IF1220 Discrete

Mathematics course

VII. APPENDIX

This appendix contains supporting materials, including

annotated source code for RLE, Fibonacci, and Huffman

encoding, the grayscale test image, and sample compression

outputs. It also provides compression ratio calculations and data

tables used in the analysis. All resources can be accessed via the

GitHub repository

https://github.com/HussainDzaki/Efficiency-Comparison-

Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-

Grayscale-Image-Compression/blob/main/README.md

--- Analysis RLE Fibonaccii encoding ---

Original Size : 1036800 bits

Compressed Size : 22778 bits

 - Pixel Values: 10088 bits

 - Run Lengths : 12690 bits

Compression Ratio: 2.20%

Size reduction: 97.80%

--- RLE Huffman Analysis ---

Original Size : 1036800 bits

Compressed Size : 12490 bits

 - Pixel Values: 2402 bits

 - Run Lengths : 10088 bits

Compression Ratio: 1.20%

Size reduction: 98.80%

--- Analysis Basic RLE ---

Original Size : 1036800 bits

Compressed Size : 20176 bits

 - Pixel Values: 10088 bits

 - Run Lengths : 10088 bits

Compression Ratio: 1.95%

Size reduction: 98.05%

https://github.com/HussainDzaki/Efficiency-Comparison-Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-Grayscale-Image-Compression/blob/main/README.md
https://github.com/HussainDzaki/Efficiency-Comparison-Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-Grayscale-Image-Compression/blob/main/README.md
https://github.com/HussainDzaki/Efficiency-Comparison-Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-Grayscale-Image-Compression/blob/main/README.md

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

REFERENCE

[1] Munir, Rinaldi. 2024. Pengantar pemrosesan citra digital (bagian 1) .
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2024-2025/01-
Pengantar-Pemrosesan-Citra-Digital-Bag1-2024.pdf (accessed on 18
June 2025)

[2] Munir, Rinaldi. 2024. Pembentukan Citra dan Digitalisasi Citra.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/03-
Pembentukan-Citra-dan-Digitalisasi-Citra-2022. (accessed on 20 June
2025)

[3] Munir, Rinaldi. 2024. Pemampatan Citra (bagian 1).
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2024-2025/25-
Image-Compression-Bagian1-2024.pdf. (accessed on 20 June 2025)

[4] Munir, Rinaldi. 2024. Deretan, Rekursim dan Relasi Rekurens (bagian 1).

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-
Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf. (accessed
on 20 June 2025)

[5] GeeksForGeeks, 2023, Fibonacci Coding.
https://www.geeksforgeeks.org/dsa/fibonacci-coding/. on 20 June 2025)

[6] Munir, Rinaldi. 2024. Pohon (bagian 2).
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-
Pohon-Bag2-2024.pdf. (accessed on 20 June 2025)

[7] Angkisan, Carlo. 2025. Implementasi Algoritma Huffman untuk Optimasi
Kompresi Data pada Penyimpanan Citra Digital.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/Makalah/Makalah-IF1220-Matdis-2024%20(70).pdf (accessed on
18 June 2025)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini adalah tulisan
saya sendiri, bukan saduran, atau terjemahan dari makalah orang lain, dan

bukan plagiasi.

Bandung, 20 Juni 2025

Dzaki Ahmad Al Hussainy, 13524084

https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2024-2025/01-Pengantar-Pemrosesan-Citra-Digital-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2024-2025/01-Pengantar-Pemrosesan-Citra-Digital-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/03-Pembentukan-Citra-dan-Digitalisasi-Citra-2022
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2022-2023/03-Pembentukan-Citra-dan-Digitalisasi-Citra-2022
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2024-2025/25-Image-Compression-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2024-2025/25-Image-Compression-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/10-Deretan,%20rekursi-dan-relasi-rekurens-(Bagian1)-2024.pdf
https://www.geeksforgeeks.org/dsa/fibonacci-coding/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/Makalah/Makalah-IF1220-Matdis-2024%20(70).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/Makalah/Makalah-IF1220-Matdis-2024%20(70).pdf

	I. Introduction
	II. Theoritical Framework
	A. Digital Image
	C. Image Compression

	III. Implementation
	IV. Result And Further Analysis
	V. Summery And Recomandation
	VI. Aknowledgment
	VII. Appendix
	Reference

