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Abstract— This paper presents a comparative analysis of 

two hybrid lossless compression methods for grayscale 

images: RLE-Fibonacci and RLE-Huffman. Both 

techniques begin by applying Run-Length Encoding (RLE) 

to reduce spatial redundancy by encoding consecutive 

identical pixel values. The RLE-Fibonacci method then 

compresses the run-length values using Fibonacci coding, a 

universal binary code that is efficient for representing small 

integers. In contrast, the RLE-Huffman approach applies 

Huffman coding, which assigns variable-length codes based 

on the frequency of each run-length value. The performance 

of both methods is evaluated using standard grayscale 

image datasets and assessed through key metrics such as 

Compression Ratio (CR). 

Keywords— Gray scale, Fibonacii Coding, Run Length 

Encoding, Huffman Coding, Lossless Compression 

I.  INTRODUCTION  

With the growing demands of today’s digital era, efficient 

storage and transmission of data—especially digital images—

have become increasingly important. The rise in digital photos 

and illustrations calls for the use of lossless data compression 

systems. Lossless compression is particularly crucial in fields 

such as medical data storage and archival systems. 

Grayscale images, which are typically represented using a 

single channel per pixel, often exhibit large regions of uniform 

intensity. This characteristic makes them highly suitable for 

Run-Length Encoding (RLE), a simple yet effective 

compression algorithm that reduces spatial redundancy by 

encoding consecutive identical values as a single value paired 

with a count. 

To further enhance the efficiency of RLE, it can be 

combined with other encoding techniques. One such method is 

Fibonacci coding, a universal binary encoding scheme that 

efficiently represents small positive integers, such as the run 

lengths produced by RLE. This combined approach—referred 

to as RLE-Fibonacci—can offer improved compression 

performance, particularly for images with frequent short run 

lengths. 

Another well-established method for compressing data is 

Huffman coding, which assigns variable-length binary codes to 

data values based on their frequency of occurrence. When 

combined with RLE, the resulting RLE-Huffman method 

leverages both spatial redundancy and statistical coding 

efficiency to reduce image size. 

This paper presents a comparative study of these two hybrid 

lossless compression approaches: RLE-Fibonacci and RLE-

Huffman. Both methods are applied to standard grayscale 

image datasets and evaluated using metrics such as 

Compression Ratio (CR) . The goal is to analyze and compare 

their efficiency, highlight their respective advantages and 

limitations, and determine their suitability for different types of 

grayscale image data. 

II. THEORITICAL FRAMEWORK 

A. Digital Image 

In the field of image processing, an image is referred as a 
picture that can be defind as representation that exists in two-
dimensional (2D) space. An image is a continous two-
dimentional signal that can be perceived by the human visual 
system. More formally, it can be described mathematically as 
two-dimentional function, where the coordinates (x,y) indicate 
specific points on the 2D plane, and the function f(x,y) 
correspond to the intensity of light, or brightness, at each of 
those point [1]. 

Images can be classified based on the number of frames they 
contain. Broadly, there are two main types: still images and 
moving images. A still image is a static, single frame that does 
not change over time. In contrast, a moving image consists of a 
sequence of frames displayed in rapid succession, creating the 
illusion of motion. Each individual frame in a moving image is 
essentially a still image captured at a specific moment in time[1]. 

A digital image is a discrete representation of a continuous 
visual signal, obtained through sampling in both space and time 
[1]. Temporal sampling refers to the process of capturing a 
sequence of frames over time, as in video. Spatial sampling 
involves measuring the intensity of light at discrete coordinate 
points (x, y) within each frame [1]. 
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Digital images are typically represented as two-dimensional 
matrices of size M x N, where M and N denote the image’s 
resolution in terms of rows and columns, respectively [1].  

𝑓(𝑥, 𝑦) = [

𝑓(0,0) ⋯ 𝑓(0, 𝑁 − 1)
⋮ ⋱ ⋮

𝑓(𝑀 − 1,0) ⋯ 𝑓(𝑀 − 1, 𝑁 − 1)
] 

Each element in the matrix corresponds to a pixel (short for 
picture element), which stores the intensity or color value at a 
specific spatial location [1].  Each pixel in an image is defined 
by the function f(x, y), which determines the brightness or 
darkness at the corresponding coordinates (x, y).  Example 
image 2. 2 have a resolution of 1200 × 1500 pixels contains a 
total of 1,800,000 individual pixels. This means the image has 
1200 rows and 1500 columns, and each pixel represents a 
specific intensity or color value at a unique position (x, y) within 
the image [1]. 

 

 

Fig 2.A.1 Ilustration pixel on image  

(Source: [1]) 

The value of f(x, y) depends on the type of image. In a 
grayscale image, f(x, y) consists of a single intensity value that 
represents the level of brightness, typically ranging from black 
to white. In contrast, a colored image uses a vector-valued 
function f(x, y) = (R, G, B), where each component corresponds 
to the intensity of the red, green, and blue channels. These three 
components are combined to produce a wide range of colors 
perceived in the image. 

B. Grayscale Image 

A grayscale image is an image that represents pixel intensity 
values using quantized levels of light intensity.[2] Quantization 
refers to the process of discretizing a continuous range of light 
intensity at each spatial coordinate (x, y).[2] The main purpose 
of quantization is to map continuous light values into K discrete 
intensity levels. Each pixel’s intensity is represented by a value 
in the range [0, K - 1], where this range is referred to as the gray 
level. The quantization process divides the intensity scale into K 
distinct values such as 0, 1, 2, …, K – 1 [2]. Typically, K is 
chosen as a power of two, expressed as K = 2𝑚, where m is a 
positive integer. In this context, K defines the number of gray 
levels available, and m determines the number of bits used to 
represent each pixel [2]. 

 
Fig 2.B.1 representaion of K value  

(Source: [2]) 

C. Image Compression 

Image compression is a technique used to reduce 

redundancy in the representation of image data, with the goal of 

minimizing storage requirements without significantly 

compromising image quality. A compressed image requires less 

memory compared to an uncompressed one, and as a result, 

transmission of compressed images is generally faster and more 

efficient [3]. 

The main objective of image compression is to eliminate 

redundancy such as repetitive data that can be represented more 

compactly. Redundancy refers to repeating patterns or 

predictable elements within the image that can be encoded more 

efficiently. There are three primary types of redundancy in 

images: 

1. Coding Redundancy 

This occurs when the same pixel values are represented 

using longer or inefficient codewords[3].  

2. Spatial/Temporal Redundancy 

This type of redundancy arises when neighboring 

pixels (in space or in consecutive frames of a video) 

have similar or identical intensity values [3].  

3. Psychovisual Redundancy 

This refers to information that is perceptually less 

important or even imperceptible to the human visual 

system [3].  

D. Method to File compression 

Image compression techniques can generally be divided into 

two categories based on whether or not they preserve all 

original data:  

1. Lossy compression  

Lossy compression educes the file size significantly by 

permanently removing certain image details that are less 

noticeable to the human eye [3]. Although some 

information is lost in the process, the resulting image 

still maintains a visually acceptable quality. This method 

typically achieves a higher compression ratio compared 

to lossless techniques, making it suitable for applications 

where perfect accuracy is not essential, such as web 

graphics and digital photography. Common examples 
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include JPEG compression and fractal-based image 

compression [3]. 

2. Lossless compression  

Lossless compression preserves all the original image 

data, allowing the image to be perfectly reconstructed 

after decompression without any loss of information [3]. 

Although it generally results in lower compression ratios 

than lossy methods, it is essential in fields that require 

high fidelity and data integrity, such as medical imaging 

and X-rays. Examples of lossless compression 

techniques include Huffman coding, Run-Length 

Encoding (RLE), and predictive or quantized coding[3]. 

E. Run-Length Encoding (RLE) 

Run-Length Encoding (RLE) is a compression technique 

used for reducing the size of images that contain many 

sequential pixels with the same gray level [3]. It works by 

creating a pair (p, q), where p is the gray level, and q is the 

number of consecutive pixels that share that grayness—this 

count is called the run length. 

For example, a row like [120, 120, 120, 45, 45] would be 

encoded as [(120, 3), (45, 2)]. This helps save space by avoiding 

repeated values. 

F. Fibonacii sequance 

The Fibonacci sequence is a well-known numerical 

sequence defined by a specific recurrence relation. Each term 

in the sequence is the sum of the two preceding terms, starting 

from the initial values 0 and 1 [4]. Formally, the sequence 𝐹𝑛 is 

defined as follows: 

 

G. Fibonacii coding 

Fibonacci coding encodes an integer into binary using the 

Fibonacci representation of a number, based on Zeckendorf’s 

Theorem [5]. This theorem says that every positive number can 

be written as a sum of different Fibonacci numbers, as long as 

we don’t use two that are next to each other in the sequence [5]. 

So for any number N, we can find a combination of non-

consecutive Fibonacci numbers that add up to N. This unique 

way of writing a number is called its Zeckendorf representation, 

and it’s what we use to build the Fibonacci code [5]. Then, to 

make decoding easy, we add a special ‘11’ terminator at the end 

of the binary sequence.  

 
Fig 2.G.1 Ilustration pixel on Fibonacii coding 

(Source: [5]) 

 

H. Huffman Coding 

 

Huffman coding is a lossless compression method that 

encodes pixels with higher frequency using fewer bits than 

those with lower frequency. Huffman coding uses a Huffman 

tree to create the encoding. The algorithm is: 

1. Every grayness intensity is represented as a vertex; 

each vertex is assigned the frequency of that 

grayness in every single pixel. 

2. Sort all vertices in ascending order based on their 

frequency. 

3. Combine the two vertices with the smallest 

frequencies into a new vertex. The new vertex's 

frequency is the sum of the two leaf frequencies. 

4. Repeat step 2 until there is only one single binary 

tree. 

5. Label the left edge with zero and the right edge with 

one. 

6. Traverse the binary tree from the root to each leaf. 

The sequence of edge labels from root to leaf 

represents the Huffman code for the corresponding 

gray level. 

The binary string produced by Huffman coding is known as 

a prefix code or prefix-free code. A prefix-free code means that 

no codeword is a prefix of any other codeword. This ensures 

that each code has a unique sequence of bits at the beginning, 

making all the codes distinct and allowing unambiguous 

decoding [6]. 

 

 

III. IMPLEMENTATION 

A. Restrictions and Scope of Analysis 

This paper will focus exclusively on grayscale images, with 

pixel intensities ranging from 0 (black) to 255 (white) and 

represented within K = 8 bits. Additionally, the scope of image 

analysis will be limited to pixel dimensions ranging from 10x10 

to 100x100. To facilitate a clearer analysis and explanation of 

the Huffman tree, this study will not delve into aspects 

concerning image metadata, header files, or specific image 

formatting. 
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B. Implementation and Case Study 

The grayscale image compression process starts by loading 

the image and converting it into a one-dimensional (1D) array, 

where each value represents the gray intensity of a pixel. Next, 

Run-Length Encoding (RLE) is applied to compress repeating 

pixel values. This step transforms the pixel sequence into a 

series of pairs, where each pair consists of a gray intensity value 

and its corresponding run length, effectively reducing 

redundancy in the image data. 

After RLE, the compressed data is processed using two 

different encoding approaches for comparison. In the first 

method, the run length values are encoded using Fibonacci 

encoding, which utilizes unique binary representations based on 

Zeckendorf’s Theorem. In the second method, the gray 

intensity values are encoded using Huffman coding, which 

assigns shorter binary codes to more frequently occurring 

intensities. Finally, the total compressed size from both 

methods is calculated and compared using the compression 

ratio to determine which method provides better compression 

efficiency. Here is the flow of the method used. 

 

 

 

Image 3.B.1.1 Flow chart of compression method with 
RLE-Fibonacii and RLE Huffman Encoding 

(Source: Author’s Archive) 

 

 

 

 

B.1 Converting Image Into Pixel Matrix 

Before compressing happened the image need to be change 
into pixel matrix, which is 2D matrix with every single element 
represent grayscale range 0 to 255. 

 

 

Fig 3.B.1.2 Ilustration 10x10 pixel 2D image grayscale 
pixel. 

(Source: Author’s Archive) 

 

For illustration purposes, Figure 3.B.1, which visually 

resembles an elephant, can be represented as a 2D matrix, where 

each element corresponds to a pixel’s grayscale intensity value. 

This matrix structure provides a digital representation of the 

image, suitable for further processing. Here is the visualised 

matrix. 

 

 
 

In the implementation, the Pillow (PIL) library is used to 

read the image file. Pillow is an open-source Python package 

widely used for image processing tasks, including opening, 

converting, and manipulating image data. To simplify the 

application of Run-Length Encoding (RLE), the 2D image 

matrix must first be flattened into a 1D array. This 

transformation is performed using the NumPy library, which 

provides efficient operations on numerical arrays. The 

following code snippet demonstrates this process: 

 

 
Image 3.B.1.3 Implementation code for reading file and 

convert it into 1D array 

(Source: Author’s Archive) 
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B.2 Implementing RLE  

After converting the image into 1D array RLE is applied to 
compress the pixel sequence into a series of pairs, where each 
pair consists of a gray intensity value and its corresponding run 
length, effectively reducing redundancy in the image data. 

 

Fig 3.B.2.1 Implementation code RLE 

(Source: Author’s Archive) 

An example of the resulting 1D array after applying Run-
Length Encoding (RLE) can be represented as follows: 

[(236, 21), (159, 3), (236, 2), (159, 3), (236, 2), (159, 1), (178, 
6), (159, 1), (236, 2), (178, 1), (8, 2), (178, 2), (8, 2), (156, 1), 
(236, 2), (178, 3), (104, 2), (178, 1), (168, 1), (156, 1), (236, 3), 
(178, 1), (104, 3), (156, 2), (236, 4), (178, 1), (104, 2), (156, 2), 
(236, 5), (104, 2), (236, 16)] 

In this representation, the first value of each pair denotes the 

grayscale intensity level (gray value), while the second value 

represents the corresponding run length, indicating how many 

consecutive pixels share the same intensity. After obtaining this 

encoded sequence, two different lossless compression methods 

can be implemented to further compress the data and evaluate 

their relative effectiveness. 

 

C.  Implementing Fibonacii Coding 

The following steps are implemented in the provided code 

to generate the Fibonacci encoding of a given number: 

1.  Preallocate Fibonacci Numbers 

A list of Fibonacci numbers is generated starting 

from 1 and 2. 

Generation continues until the largest Fibonacci 

number less than or equal to the input number n is 

found. 

2.  Find Largest Fibonacci Number ≤ n 

 A helper function largestFiboLessOrEqual(n) 

iteratively computes Fibonacci numbers until it finds 

the largest one satisfying 𝐹𝑘 ≤ n. This is for index that 

serves as the starting point for the encoding. 

 

3.  Initialize Codeword Array 

 An array codeword of size index + 2 is initialized. 

The +2 ensures space for the binary representation 

and the mandatory terminating 1. 

4. Encode Using Greedy Subtraction 

 Beginning from the largest valid Fibonacci index, the 

algorithm subtracts Fibonacci values from n in 

descending order. If a Fibonacci number is part of the 

sum, a 1 is written at that position in the codeword 

array. If a Fibonacci number is skipped (because it 

would exceed the remaining value of n), a 0 is written 

instead. 

5. Add Terminator 

 After encoding the number, a final 1 is appended to 

mark the end of the codeword. This ensures the code 

is self-delimiting and prefix-free. 

 
 

Fig 3.C.1.1 Implementation code of Fibonacii coding  

(Source: Author’s Archive) 

Example the number 21 from the first run-length can be 
coded into 00000011 in fibonacii encoding. 

Next step is encode gray level using standard binary 
representation. The result is a mixed-format encoding where 
data redundancy is reduced by applying different encoding 
schemes suited to the nature of each component. 
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Fig 3.C.1.2 Implementation storing RLE value and 
Fibonacii code 

(Source: Author’s Archive) 

Gray 

value 

frequencies Gray value in 

binary 

Fibonacii encoded 

frequencies 

236 21 11101100 00000011 

159 3 10011111 0011 

236 2 11101100 011 

159 3 10011111 0011 

236 2 11101100 011 

159 1 10011111 11 

178 6 10110010 10011 

159 1 10011111 11 

236 2 11101100 011 

178 1 10110010 11 

8 2 00001000 011 

178 2 10110010 011 

8 1 00001000 011 

156 1 10011100 11 

236 2 11101100 011 

178 3 10110010 0011 

104 3 01101000 011 

178 1 10110010 11 

168 1 10101000 11 

156 1 10011100 11 

236 3 11101100 0011 

178 1 10110010 11 

104 3 01101000 0011 

156 2 10011100 011 

236 4 11101100 1011 

178 1 10110010 11 

104 2 01101000 011 

156 2 10011100 011 

236 5 11101100 00011 

104 2 01101000 011 

236 16 11101100 0010011 

 

After that comparing and analysis will continue in section E 

D. Implementing Huffman Coding 

Huffman coding is applied to encode the gray levels derived 

from the output of RLE. However, the frequency of each 

intensity value cannot be directly obtained from the original 

image and must be computed from the RLE result. Therefore, a 

helper function is required to traverse the RLE output and 

accumulate the total frequency of each gray level. The 

implementation of this helper function is presented as follows: 

 

 
Fig 3.D.1.1 Implementation counting RLE Gray 

frequencies 

(Source: Author’s Archive) 

The function count_gray_frequencies is designed to 

calculate the total frequency of each gray level from a list of 

Run-Length Encoded (RLE) values. In RLE format, each 

element of the list is a tuple (value,  count), where value 

represents the gray values and count represents how many times 

it appears consecutively. After applying the function here is the 

sum of all of the frequencies:  
Gray value 236 159 178 8 156 104 168 

Frequencies 57 8 15 4 6 9 1 

 

These frequencies are sorted then used as input to the 

Huffman coding algorithm. Huffman coding constructs an 

optimal binary tree based on symbol frequencies, assigning 

shorter binary codes to more frequent gray values and longer 

codes to less frequent ones. This variable-length, prefix-free 

encoding minimizes the average number of bits required to 

represent the intensity values. The resulting Huffman encoding 

tree as follow 

 

 
 

Fig 3.D.1.2 Huffman Tree Result from Huffman Coding 

(Source: Author’s Archive) 

 
The resulting traversal of the Huffman tree produces the 

binary code for each gray level. Each leaf node in the tree 
represents a unique gray value, and the path from the root to that 
leaf determines its corresponding Huffman code. Moving left 
adds a 0 to the code, while moving right adds a 1. This traversal 
process ensures that frequently occurring gray values receive 
shorter codes, while less frequent values receive longer codes, 
thereby optimizing the overall compression efficiency. The 
resulting encoded binary representations for each gray value, 
obtained by traversing the Huffman tree, are presented as 
follows: 
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Gray value frequencies Encoded Huffman 

168 1 01000 

8 4 01001 

156 6 0101 

159 8 000 

104 9 001 

178 15 011 

236 57 1 

 

 

 

This is the implementation code for Huffman coding :  

 

 
 

 
 

 
Fig 3.D.1.3 Implementation code of Huffman coding 

(Source: Author’s Archive) 

The next step involves encoding the gray levels using the 
binary representations derived from the Huffman coding tree. 
Each gray value is replaced by its corresponding Huffman code, 
which is obtained by traversing the tree structure. Additionally, 

the run-length count associated with each gray level in the RLE 
output is encoded separately using a binary representation. 

 

Fig 3.D.1.4 Implementation code of Huffman coding in 
RLE 

(Source: Author’s Archive) 

The result of applying Huffman encoding to the gray values 

and binary encoding (e.g., Fibonacci) to the run-length counts 

from Figure 3.B.1.2 is presented in the table below. Each pair 

represents a compressed form of (p, q), where:  

The first element is the Huffman binary code for the gray 

value. 

The second element is the normal binary encoding. 

 
Gray 

value 

frequencies Huffman Gray 

Value 

Binary 

frequencies 

236 21 1 00010101 

159 3 000 00000011 

236 2 1 00000010 

159 3 000 00000011 

236 2 1 00000010 

159 1 000 00000001 

178 6 011 00000110 

159 1 000 00000001 

236 2 1 00000010 

178 1 011 00000001 

8 2 01001 00000010 

178 2 011 00000010 

8 1 01001 00000010 

156 1 0101 00000001 

236 2 1 00000010 

178 3 011 00000011 

236 2 001 00000010 

178 1 011 00000001 

168 1 01000 00000001 

156 1 0101 00000001 

236 3 1 00000011 

178 1 011 00000001 

104 3 001 00000011 

156 2 0101 00000010 

236 4 1 00000100 

178 1 011 00000001 

104 2 001 00000010 

156 2 0101 00000010 

236 5 1 00000101 

104 2 001 00000010 

236 16 1 00010000 

 

 

E. Calculating Compression Ratio 

To evaluate the efficiency of each compression method, it 

is necessary to compare the original file size before 

compression with the compressed file size after applying a 

given encoding technique. The compression ratio is calculated 

using the following formula: 
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𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (𝐶𝑟) = (
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒
) ×  100 %  

 

In accordance with the Restrictions and Scope of Analysis, 

the bit-length of each grayscale pixel is defined as K = 8, 

meaning each gray value is represented using 8-bit binary. 

Based on Figure 3.B.1, the image contains 100 pixels. 

Therefore, the original file size is: 

 

 
 

1. Fibonacci Encoding Analysis 

To determine the total size after compression using 

Fibonacci encoding, the following summation is used: 

 

𝐶𝑠𝐹𝑖𝑏 =  ∑ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑖𝑏𝑜𝑛𝑎𝑐𝑖𝑖𝐸𝑛𝑐𝑜𝑑𝑒𝑑)𝑖)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝐿𝐸)

𝑖=1

+ 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑛𝑎𝑟𝑦 𝑔𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒𝑖 ))   

 

𝐶𝑠𝐹𝑖𝑏 = 103 + 248 = 351 𝑏𝑖𝑡𝑠  
 

𝐶𝑟𝐹𝑖𝑏 =
351

800
×  100% = 43.88% 

 

This result indicates that the image size was reduced by 

approximately 43.88% through Fibonacci-based encoding. 
 

2. Huffman Encoding Analysis 

Using Huffman coding, the compressed size is 

computed as: 

𝐶𝑠𝐻𝑢𝑓𝑓 =  ∑ (𝑙𝑒𝑛𝑔𝑡ℎ(ℎ𝑢𝑓𝑓𝑚𝑎𝑛)𝑖)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝐿𝐸)

𝑖=1

+ 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑛𝑎𝑟𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠𝑖 ))  

𝐶𝑠𝐻𝑢𝑓 = 85 + 248 = 333 𝑏𝑖𝑡𝑠  

𝐶𝑟𝐻𝑢𝑓 =
333

800
×  100% = 41.62% 

Thus, Huffman compression achieved a size reduction of 

approximately 41.6%. 

 

3. Basic RLE with Fixed-Length Binary 

As a control, basic RLE is applied using standard binary 

representation for both the gray values and run-lengths: 

𝐶𝑠𝑁 =  ∑ (𝑙𝑒𝑛𝑔𝑡ℎ(𝑏𝑖𝑛𝑎𝑟𝑦 𝑔𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒)𝑖)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑅𝐿𝐸)

𝑖=1

+ 𝑙𝑒𝑛𝑔𝑡ℎ( 𝑏𝑖𝑛𝑎𝑟𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠𝑖 ))   

𝐶𝑠𝑁 = 248 + 248 = 496 𝑏𝑖𝑡𝑠  

𝐶𝑟𝑁 =
496

800
×  100% = 62.00% 

This shows that basic RLE alone provides a smaller 

reduction, shrinking the image size by 38%. 

 
 

Fig 3.E.1.1 Implementation code to help calculate Cr 

(Source: Author’s Archive) 

 

IV. RESULT AND FURTHER ANALYSIS 

After calculating all compression ratio and size reduction 

now can be summarizes into tabel bellow the performance of 

the three evaluated encoding techniques in terms of compressed 

size and compression ratio, based on an original grayscale 

image of 100 pixels (800 bits in uncompressed form): 

 

Compression 

Method 

Compressed 

Size (bits) 

Compression 

Ratio (%) 

Size 

Reduction 

(%) 

Fibonacci 

Encoding 

351 43.88% 56.12% 

Huffman 

Encoding 

333 41.62% 58.38% 

Basic RLE 

(8-bit fixed) 

496 62.00% 38.00% 

 

 

Huffman encoding yielded the smallest compressed size 

(333 bits) and the highest size reduction (58.38%). This result 

aligns with Huffman coding’s principle of assigning shorter 

binary codes to more frequent symbols, which significantly 

reduces redundancy in data with non-uniform frequency 

distributions. 

 

Fibonacci encoding, while slightly less efficient than 

Huffman, still achieved a significant reduction (351 bits, 

56.12% savings). Its strength lies in encoding numerical values 
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like run lengths using variable-length prefix-free codes without 

requiring a frequency table. This makes it beneficial in 

environments where maintaining symbol frequencies is costly 

or unnecessary. 

 

Basic RLE using fixed 8-bit binary encoding for both pixel 

values and run-lengths resulted in the least efficient 

compression, with only a 38.00% reduction. While RLE is 

effective for sequences with long repeated values, it lacks the 

adaptability of variable-length encodings and tends to include 

overhead when repetition is not dominant. 

 

Previous research [7] recommended the use of Run-Length 

Encoding (RLE) combined with Huffman coding to achieve 

higher compression efficiency, particularly in images 

dominated by repetitive grayscale intensity values. To assess 

the validity of this claim, three compression strategies—RLE 

with Fibonacci encoding, RLE with Huffman encoding, and 

basic RLE with fixed-length binary—were applied to a 

grayscale image consisting of 1,036,800 bits (corresponding to 

129,600 pixels, each represented using 8 bits). 

 

 

The combination of RLE and Huffman encoding produced the 

most efficient compression, reducing the image size by 98.80% 

and achieving a compressed size of only 12,490 bits. This 

outcome demonstrates superior performance compared to RLE 

with Fibonacci encoding (97.80% reduction) and basic RLE 

(98.05% reduction). 

 

These findings support the recommendation made in [7], 

confirming that Huffman encoding, when applied after RLE, 

significantly enhances compression efficiency. The 

improvement is attributed to Huffman’s capacity to assign 

shorter codes to frequently occurring symbols, which 

complements the output of RLE by effectively compressing 

repeated patterns in grayscale images. 

V. SUMMERY AND RECOMANDATION 

Across both experiments, Huffman encoding consistently 

provided superior compression results. This is attributed to its 

optimal use of variable-length prefix codes based on frequency 

distribution, making it especially effective after applying RLE, 

which flattens repeated pixel values. Fibonacci encoding, while 

slightly less efficient in terms of space savings, offers simplicity 

and deterministic decoding, making it suitable in systems where 

codebook transmission is impractical or forbidden. 

Basic RLE using fixed 8-bit binary representations is the 

simplest to implement but suffers from a lack of adaptiveness 

to data frequency. Its performance is acceptable in highly 

uniform images but suboptimal otherwise. 

Based on the above findings, Huffman encoding following 

RLE is the most efficient compression strategy for grayscale 

images in both small and large data settings. Fibonacci 

encoding may be considered a viable alternative where 

computational simplicity or prefix-free encoding is required. 

Basic RLE serves as a baseline method but is not recommended 

for scenarios where maximum compression is critical. 

Future work is encouraged to explore fractal-based or 

hybrid compression approaches, particularly for images 

containing self-similar patterns, as they may provide even 

greater compression yields. 

VI. AKNOWLEDGMENT 

The author extends heartfelt gratitude to Allah S.W.T for 

providing wisdom, perseverance, and opportunity to complete 

this paper successfully. Sincere appreciation is all extended to 

Mr. Dr. Ir. Rinaldi Munir, M.T.,  and Mr. Arrival Dwi 

Sentosa, S.Kom., M.T. as the lecturer of the IF1220 Discrete 

Mathematics course 

VII. APPENDIX 

This appendix contains supporting materials, including 

annotated source code for RLE, Fibonacci, and Huffman 

encoding, the grayscale test image, and sample compression 

outputs. It also provides compression ratio calculations and data 

tables used in the analysis. All resources can be accessed via the 

GitHub repository 

https://github.com/HussainDzaki/Efficiency-Comparison-

Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-

Grayscale-Image-Compression/blob/main/README.md 

--- Analysis RLE Fibonaccii encoding --- 

Original Size   : 1036800 bits 

Compressed Size : 22778 bits 

  - Pixel Values: 10088 bits 

  - Run Lengths : 12690 bits 

Compression Ratio: 2.20% 

Size reduction: 97.80% 

 

--- RLE Huffman Analysis --- 

Original Size   : 1036800 bits 

Compressed Size : 12490 bits 

  - Pixel Values: 2402 bits 

  - Run Lengths : 10088 bits 

Compression Ratio: 1.20% 

Size reduction: 98.80% 

 

--- Analysis Basic RLE --- 

Original Size   : 1036800 bits 

Compressed Size : 20176 bits 

  - Pixel Values: 10088 bits 

  - Run Lengths : 10088 bits 

Compression Ratio: 1.95% 

Size reduction: 98.05% 

 

https://github.com/HussainDzaki/Efficiency-Comparison-Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-Grayscale-Image-Compression/blob/main/README.md
https://github.com/HussainDzaki/Efficiency-Comparison-Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-Grayscale-Image-Compression/blob/main/README.md
https://github.com/HussainDzaki/Efficiency-Comparison-Between-RLE-Fibonacci-and-RLE-Huffman-Coding-in-Grayscale-Image-Compression/blob/main/README.md
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